Immunofluorescence analysis of a group of proliferating stem cells associated with a muscle fiber (grey). The stem cells produce Dll1 (red) and MyoD (green). Two of the cells produce MyoG (blue): They are differentiating to form a new muscle cell. Note that the overlay of blue, green, and red appears as white. Credit: Birchmeier Lab, MDC

Three oscillating proteins cause new muscle cells to emerge from muscle stem cells in a balanced manner. In a paper being published in the journal Nature Communications, a team led by MDC researcher Carmen Birchmeier explains in detail how this process works.

When a muscle grows, because its owner is still growing too or has started exercising regularly, some of the stem cells in this muscle develop into new muscle cells. The same thing happens when an injured muscle starts to heal. At the same time, however, the muscle stem cells must produce further stem cells – i.e., renew themselves – as their supply would otherwise be depleted very quickly. This requires that the cells involved in muscle growth communicate with each other.

Muscle growth is regulated by the Notch signaling pathway

Two years ago, a team of researchers led by Professor Carmen Birchmeier, head of the Developmental Biology/Signal Transduction Lab at the Berlin-based Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), showed that the development of stem cells into muscle cells is regulated with the help of two proteins, Hes1 and MyoD, which are produced in the progenitor cells in an oscillatory manner – i.e., there are periodic fluctuations in the number of cells produced.

Both proteins are involved in the Notch signaling pathway, a widespread mechanism by which cells respond to external stimuli and communicate with other cells. The signaling pathway is named after its receptor “Notch,” onto which the ligand “Delta,” a cell surface protein, latches.

A third protein, Delta-like1, plays a crucial role

“In our current study, we have provided unequivocal evidence that oscillation in muscle tissue is not just some strange phenomenon of the cells involved, but that these rhythmic fluctuations in gene expression are actually crucial for transforming stem cells into muscle cells in a balanced and controlled manner,” says Birchmeier.

Together with researchers from Japan and France, Birchmeier and four …….

Source: https://scitechdaily.com/scientists-uncover-the-key-to-proper-muscle-growth/

Leave a Reply

Your email address will not be published. Required fields are marked *